154.com皇冠学术报告
--- 分析与偏微分方程讨论班(2023春季第8讲)
Classification of solutions to semi-linear polyharmonic equations and fractional equations
杜卓然
(湖南大学)
时间:2023-06-05 10:00-11:00 (周一上午)
地点: 腾讯会议 ID:475-997-573
腾讯会议链接:https://meeting.tencent.com/dm/niX43xdh75oi
摘要: We study the following semi-linear polyharmonic equation with integral constraint
\begin{eqnarray}
\left\{\begin{array}{rl}
&(-\Delta)^pu=u^\gamma_+ \mbox{ in }{\mathbb{R}^n},\\
&\int_{\mathbb{R}^n}u_+^{\gamma}dx<+\infty,
\end{array}\right.
\end{eqnarray}
where $n>2p$, $p\geq2$ and $p\in\mathbb{Z}$. We obtain for $\gamma\in(1,\frac{n+2p}{n-2p})$ that any nonconstant solution satisfying certain conditions at infinity is radial symmetric about some point in $\mathbb{R}^{n}$ and monotone decreasing in the radial direction. For the following fractional equation with integral constraint
\begin{eqnarray}
\left\{\begin{array}{rl}
&(-\Delta)^sv=v^\gamma_+ ~~ \mbox{ in }{\mathbb{R}^n}, \\
&\int_{\mathbb{R}^n}v_+^{\frac{n(\gamma-1)}{2s}}dx<+\infty,
\end{array}\right.
\end{eqnarray}
where $s\in(0,1)$, $\gamma \in (1, \frac{n+2s}{n-2s})$ and $n\geq 2$, we also complete the classification of solutions with certain growth at infinity.
报告人简介: 杜卓然,湖南大学数学学院副教授。研究领域为偏微分方程理论与非线性分析。在Adv. Math., Calc. Var. PDE, JDE等权威期刊上发表论文多篇。
邀请人:戴蔚
欢迎大家参加!